53 research outputs found

    The ATLAS liquid argon electromagnetic calorimeter

    Get PDF
    The ATLAS detector will start operation on the LHC in 2005. The collaboration has chosen a liquid argon electromagnetic calorimeter with accordion shape. Modules 0 of the barrel and the endcap were tested under electron beam at CERN during summer 99. The results of these tests are presented as well as the status of the modules' production. (4 refs)

    Precision Physics with the ATLAS detector at LHC

    Get PDF

    Première mesure de section efficace de production du boson W et de son asymétrie de charge avec l'expérience ATLAS

    Get PDF
    Le détecteur ATLAS est une expérience généraliste de physique des particules situéeà un point de collision du LHC, au CERN. Le détecteur est complet et opérationneldepuis juin 2008. La mise en oeuvre du système calorimétrique a alors été possible,grâce notamment à l étude de la variable "énergie transverse manquante". Cettevariable, indispensable aux mesures de précision du Modèle Standard et à larecherche de Nouvelle Physique, a ainsi pu être testée pour la première fois in situ. Ledétecteur était prêt et a montré de bonnes performances lors des premières collisionsdu LHC à la fin de l année 2009, en particulier avec l étude de données dites de biaisminimum. Avec les données de collisions, il a également été possible d étudier desperformances des électrons, notamment leurs variables d identification, et la compréhension de la matière avant le calorimètre.Les premières collisions à une énergie de 7 TeV dans le centre de masse en 2010 ontpermis d étudier les propriétés des bosons W produits lors de ces collisions. Aprèsseulement quelques mois de prise de données, l on a pu observer et mesurer la section efficace de production de cette particule. L enjeu principal de cette mesure aété l estimation des erreurs systématiques dues à l électron et à l énergie transversemanquante. Avec toutes les données enregistrées en 2010, l asymétrie de charge duboson W a également pu être mesurée. Cette mesure est importante pour ladétermination des fonctions de distribution de partons dans le proton, donnéesindispensables à la bonne compréhension des collisions hadroniques au LHC.The ATLAS detector is a multi-purpose experiment located at one of the collisionpoints of the LHC, at CERN. The detector is complete and in the acquisition since June2008. I ve been working since then on the commissioning of the calorimeter system, inparticular thanks to the study of the missing transverse energy variable. Thisvariable is essential for precision measurements of the Standard Model, and for thesearch of New Physics ; it was tested in situ for the first time. The detector are readyfor the first LHC collisions at the end of 2009, and showed good performances, inparticular in the study of minimum bias events. I also participated to the study of theelectron performances, more particularly working on the identification variables andon the material before the calorimeter.The first collisions at a centre-of-mass energy of 7 TeV allowed me to study theproperties of W bosons. I participated to the observation and to the measurement ofthe production cross-section of this particle, taking part in particular in theassessment of the uncertainties due to the missing transverse energy. With all thedata recorded in 2010, I took part in the measurement of the W boson chargeasymmetry. This measurement is important for the determination of the partondistribution functions of the proton, which are of utmost importance for theunderstanding of hadronic collisions at the LHC.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    Performance of the ATLAS Electromagnetic Calorimeter End-cap Module 0

    Get PDF
    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 < eta < 3.2 (inner wheel)

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore